A Novel Approach in Realistic Wind Data Generation for The Safe Operation of Small Unmanned Aerial Systems in Urban Environment

Abstract

In this study, we present preliminary work for a method to efficiently generate realistic wind data for urban environments using existing Large Eddy Simulation (LES) data for the safe operation of small unmanned aerial vehicles. A single building setup in neutral atmospheric conditions is considered a test case to demonstrate the method. The method relies on using Large Eddy Simulation data from a computational fluid dynamics simulation and a non-intrusive Reduced Order Modeling approach (ROM) coupled with Recurrent Neural Networks like Long Short Term Memory (LSTM). Proper Orthogonal Decomposition (POD) transform extracts modal coefficients from the high-resolution data snapshots. The LSTM network is trained on a specific number of modal coefficients defined by their relative information content. Modal predictions for future time steps are then obtained using this trained LSTM network without computationally expensive CFD simulations. An inverse POD transform obtains the corresponding velocity fields on these modal coefficients for future time steps. Since no prior information about the underlying governing equations is utilized for the predictions, the method is entirely non-intrusive.

Publication
AIAA Aviation Forum 2021
Rohit Vuppala
Rohit Vuppala
Ph.D., Current Position: University of Chicago
Kursat Kara
Kursat Kara
Assistant Professor, Mechanical and Aerospace Engineering

Dr. Kara is the principal investigator of the Kara Aerodynamics Research Laboratory at Oklahoma State University. He teaches the Fundamentals of Aerodynamics, Unsteady Aerodynamics, Computational Fluid Dynamics, and Quantum Computing. Previously, he was an assistant professor at Khalifa University, where he received the Faculty Excellence Award for Outstanding Teaching in 2015.